The Universe and Beyond: a public lecture by Dr. Reina Reyes


a public lecture by
Reina Reyes, Ph.D.

Wednesday, 26 October 2016
6:30 – 7:30 PM
Natividad Galang-Fajardo Conference Room
Ground Floor, De la Costa Hall

The lecture is organized by the PH 157.4 (Cosmology) class under the late Fr. Georges de Schrijver, SJ, who passed away on October 7, 2016.

Reina Reyes graduated B.S. Physics from Ateneo de Manila University, obtained a Diploma in High Energy Physics from Abdus Salam Institute for Theoretical Physics, and a Ph.D. in Astrophysics from Princeton University. She currently works as a data science consultant and a part-time lecturer at the Ateneo de Manila University.

Remmon E. Barbaza, Ph.D.
Associate Professor and Chair
Department of Philosophy
Ateneo de Manila University



Bending and tumbling dynamics of semi-flexible molecules: a talk by Emmanuel Plan of Universite Nice Sophia Antipolis


by Mark Loyola

You are cordially invited to attend the talk of Mr. Emmanuel Lance Christopher VI M. Plan on “Bending and tumbling dynamics of semi-flexible molecules” on September 6, 2016, 5:00 – 6:30 PM, at SECA 303A. Undergraduate and graduate students are also invited to attend the talk.


This talk will address two different questions on the dynamics of the simplest semi-flexible model, namely the trumbbell, in a flow. The trumbbell consists of three beads joined by two rigid connectors and of an elastic hinge at the central bead.

First, we show that the trumbbell performs a random end-over-end tumbling motion in an extensional flow. The trumbbell spends a significant amount of time extended and oriented along the stretching direction of the flow; occasionally, a favorable sequence of thermal fluctuations make the trumbbell fold, reverse its orientation and unfold. The mean time separating two reversals grows with the Weissenberg number Wi (the product of the amplitude of the velocity gradient and the relaxation time of the spring), and the growth is exponential. This phenomenon is explained by performing a stability analysis of the dynamical system describing the configuration of the trumbbell and by applying the large deviation theory to it.

In the second part of the talk, the Lagrangian dynamics of the trumbbell in homogeneous and isotropic turbulent flows is studied by means of analytically solvable stochastic models and direct numerical simulations. The stationary statistics of the bending angle shows a strong dependence on the dimension of the flow. In two-dimensional turbulence, particles are either found in a fully extended or in a fully folded configuration; in three dimensions, the predominant configuration is the fully extended one. Such a sensitivity of the bending statistics on the dimensionality of the flow is peculiar to fluctuating flows and is not observed in laminar stretching flows.

About the Speaker

ateneophysicsnews_emmanuel_plan_turbulence_20160903Emmanuel L. C. VI M. Plan finished his undergraduate studies in Mathematics in the Ateneo de Manila University in 2010. He obtained his Master of Science degree from the National University Singapore in 2013. He is currently finishing his doctorate in physics from Universite Nice Sophia Antipolis. He has also served as a lecturer in the Loyola Schools Mathematics Department in 2011 and 2013.

Ateneo Physics faculty Clint Dominic Bennett attends two ionospheric research workshops in ICTP, Italy



by Quirino Sugon Jr

Ateneo Physics faculty Clint Dominic G. Bennett  attended two workshops at the Abdus Salaam International Center for Theoretical Physics (ICTP), Italy. The first was the Workshop on the use of Ionospheric GNSS Satellite Derived Total Electron Content Data for Navigation, Ionospheric and Space Weather Research last 20-24 June 2016. The second workshop was the International Beacon Satellite Symposium 2016 last 27 June to 1 July, 2016.

GNSS is the Global Navigation Satellite System, a term which encompasses the Global Positioning System (GPS) of US and the GLONASS of Russia. GNSS satellites send positioning information to receivers on Earth via radio waves which pass through the ionosphere, where their propagation directions are bent or reflected in the same way as light beams pass from air to water. Comparing the satellite positions from the transmitted and received values provides information on the density of electrons in the ionosphere, positions of ground-based receivers, and the effects of solar activity on the ionosphere.

The Beacon Satellite Symposium 2016, on the other hand, was organized by Beacon Satellite Group of the International Union of Radio Science (URSI) Commission G. The symposium provides an opportunity for international ionospheric scientists to meet and collaborate on the study of ionospheric effects on radio propagation for science, engineering, and research applications.

Below is an interview with Mr. Clint Bennett by the Ateneo Physics News:

1. Where did you go to in Italy?

I went to the Abdus Salam International Center for Theoretical Physics to the attend the Workshop on use of Ionospheric GNSS Satellite Derived Total Electron Content Data for Navigation, Ionospheric and Space Weather Research last 20 – 24 June, 2016 and the International Beacon Satellite Symposium 2016 last 27 June to 1 July, 2016. The workshop focused on training the participants in using existing TEC calibration software and explaining the results in terms of Space weather events as indicated by indices such as Kp and Dst. The symposium on the other hand was actually a conference with plenary and parallel sessions. It was organized by the Beacon Satellite Studies Group of URSI Commission G, an interdisciplinary group, servicing science, research, application and engineering aspects of statellite signals observed from the ground and in space. There were around 200 participants in the symposium.

2. Who invited you to go to the conference?

I was invited by Dr. Endawoke Yizengaw from the Boston College Institute for Scientific Research. He is one of the Principal Investigators of the AMBER (African Meridian B-field Education and Research) project. The Manila Observatory is hosting two of the magnetometers for this project and Dr. Yizengaw has been here in Manila Observatory. My transportation and accommodation were shouldered by the conference organizers and sponsors: ICTP, ICG, Boston College and EGU.3. Did you present something?

A lot of us were invited as students and were not required to make a presentation. This is their way of encouraging Space weather research in third world countries. We were instead required to do exercises on TEC calibration and make a group report.

4. What are the talks that you found interesting? How are they related to your work at Manila Observatory and the Department of Physics? 

There were a lot of interesting talks. One of them was about the direct forcing of the thermosphere and ionosphere by small-scale gravity waves originating from the lower atmosphere. In the upper atmosphere gravity waves directly affect the thermospheric circulation by energy and momentum deposition and an interesting result is that gravity waves cool the upper atmosphere at a rate of -150 K per day.

Another one was about the detection of tsunami driven events in the ionosphere via occultation. They reported the ionospheric response to the great Tohoku earthquake and tsunami which occurred together with a minor magnetic storm. It was nice to learn that tsunamis can drive gravity waves to the ionosphere.

5. What are the interesting places and landmarks you visited? 

The Beacon Satellite Symposium included an excursion to Aquileia. It is listed by UNESCO as a world heritage site. It is an ancient Roman city in Friuli Venezia Giulia. It was one of the worlds largest cities during the Roman times and is now a major archaeological site with so much still to be excavated.

6. What are some key insights that you learned after the conference? 

The Beacon satellite symposium is evidence of growing interest in the study of Sun-Earth interaction. It has attracted a wide variety of international researchers from over 40 countries, a lot of them from non-academic institutions, to study the earth’s ionosphere and thermosphere and I think the Philippines can be part of this. It would be a big step forward if I could encourage students to be involved in this field of research.

7. Do you have any parting message to our physics students?

There are so many ways for students to get involved in the study of Space Weather. The international community makes an effort to direct funding towards problems that face the world as a whole, such as space weather effects and monitoring of natural hazards. These creates the availability of financial support for students from third world countries.


Excavations in the ancient Roman city Aquileia in Friuli Venezia Giulia, Italy

Art of Science and Engineering II: A talk on gravitational wave detection and nuclear fusion by Prof. Motoi Wada of Doshisha University

ateneophysicsnews_motoi_wada_20160708 (2)

The Department of Physics of Ateneo de Manila University cordially invites you to a talk entitled, Art of Science and Engineering II, by Prof. Motoi Wada of the Applied Physics Laboratory of Doshisha University. The talk will be held on July 14, 2016, Thursday, 10:00 a.m., at the 5th floor of the Rizal Library. Light snacks will be served.

This talk is Prof. Motoi Wada’s second talk at Ateneo de Manila University upon the invitation of Dr. Christian Mahinay, Head of the Vacuum Coating Laboratory of the Department of Physics. Prof. Wada’s previous talk was entitled, Art of Science and Technology, which was held last November 27, 2015, 1:30-2:30 p.m. at the Social Science Lecture Rooms 3 and 4He talked then about  Japan’s research in the fields particle accelerator physics and semiconductor industry–all with references to art and history.

Now, in Art of Science and Engineering II, Prof. Motoi Wada shall dazzle us once again with his breathtaking slides and videos as he talks on the latest updates on the LIGO experiment for gravitational wave detection and the engineering precision required to make such detection possible in Astronomy. Prof. Wada shall also talk about the cosmic recycling process–about how some stars die a violent death as supernovas, and how the dust and fragments from the nebulous smoke pull themselves together again through the force of gravity, forcing hydrogen atoms to combine to form Helium, resulting in nuclear fusion reaction that gives birth to new stars. But on Earth, the Hydrogen atoms that we generate do not have enough cumulative mass to form a star through nuclear fusion. So the only way perhaps is to force the fusion of Hydrogen by some other means aside from gravity, as Dr. Otto Octavius (Dr. Octopus) tried to do through the magnetic fields from his tentacles, before he plunged into the depths of the sea, holding the newborn star that could have destroyed the human race.

Is man-made nuclear fusion already possible with today’s technology?  How far are we before we can ditch fossil fuel, such as coal and crude oil, in favor of clean energies like nuclear fusion? Let’s ask Pro. Motoi Wada when we attend his talk on ARt of Science and Technology II this July 14, 2016. See you there!


Prayer for the repose of the soul of the father of Dr. Gemma Narisma of the Ateneo Physics Department



The Department of Physics of the School of Science and Engineering would like to express its condolences to the family of Andres Narisma, who succumbed to prolonged illness and joined our Creator this Wednesday morning, 1 June 2016.

Mr. Narisma is the father of Dr. Gemma Teresa T. Narisma, faculty member of the Department of Physics.

We will be grateful to the Ateneo community for your prayers for repose of Mr. Narisma’s soul and for the comfort of his remaining family.


“Blessed be the God and Father of our Lord Jesus Christ, the Father of compassion and the God of all consolation, who consoles us in our every affliction, so that we may be able to console those who are in any affliction with the consolation with which we ourselves are consoled by God.”  (2 Corinthians 1: 3-4)

Update: 3 June 2016

We have received word from the Department of Physics that Mr. Andres Narisma, the late father of Dr. Gemma Narisma, was cremated on 1 June 2016, the day he passed away.

The Narisma family will be observing a nine-day wake/vigil at their residence at 21 Jetta St., Village East, Cainta. Those who are interested
in paying their respects and sympathizing with the family may visit between 2:00 PM and 10:00 PM until the ninth day on June 9, with novena prayers and/or masses to be held every evening at 8:00 PM.