Novel Applications of Nanomaterials through Material Chemistry and Engineering: a talk by Dr. Joselito Razal of Deakin University

by Marienette M. Vega

The Department of Physics would like to invite you to a talk on the Novel Applications of Nanomaterials through Material Chemistry and Engineering by Dr. Joselito Razal Deputy Director, ARC Future Fibres Hub and Associate Professor, Institute for Frontier Materials, Deakin University, Australia to be held on 22 June 2017, Thursday, 2:30 pm to 4 pm at CTC 118.

Abstract. Material chemistry aims to engineer nanomaterials to perform novel functions that do not exist in its bulk form. With this engineering framework, nanomaterials have the potential to behave and function differently or more superior than that of conventional macroscopic materials. Recent efforts to implement engineering of surfaces or chemical structure and composition particularly of low-dimensional nanomaterials have provided evidences that this approach can facilitate the design and assembly of novel architectures into useful devices and cater for a wide range of applications in energy, catalysis, sensing, to name a few. In this talk, our recent efforts in developing nanomaterials with tailored properties and functions will be presented. In particular, an emphasis will be placed on our recent developments on two dimensional nanosheets with unique solution behaviour for advanced applications in energy storage and conversion.

About the Speaker. Joselito Razal (Joe) is the Deputy Director of the ARC Future Fibres Hub and an Associate Professor at the Institute for Frontier Materials, Deakin University. He is best known for his research on novel functional nanomaterials for flexible and wearable energy storage and energy harvesting applications. Joe developed the toughest synthetic fibres using carbon nanotubes during his PhD studies at the University of Texas at Dallas, which have led to the development of many types of strong and tough nanomaterial-based fibres. These fibres are also multi-functional. They can store and convert energy, and sense external stimuli such as movement and pressure. These fibres have the potential to be integrated into wearable devices, portable electronics, and smart textiles. More recently, he has studied other types of low-dimensional materials including graphene, for which he discovered that achieving large aspect ratio nanosheets allows for fine-tuning of solution behaviour. This discovery has direct implications on solution-based processing of novel 3D materials produced by 3D printing and fibre spinning technologies. This research has helped many other scientists take advantage of this unique behaviour to improve processability of many nanosheets. For his pioneering works, he was awarded a Future Fellowship by the Australian Research Council in 2013. Since then, he has been leading a team of research fellows and graduate students, and working with several industry partners alongside his collaborators in Australia and overseas.


About ateneophysicsnews
Physics News and Features from Ateneo de Manila University

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: