BS Physics-MSE student Aliena Miranda of AdMU receives award at MSE Summit 2018 research fair in UP Diliman

ateneophysicsnews_aliena_miranda_mse_summit_20180417

Aliena Mari P. Miranda (BS Applied Physics-Materials Science Engineering, 2nd from the left) during the awarding ceremonies at the Materials Science & Engineering Summit 2018 at University of the Philippines-Diliman

by Quirino Sugon Jr.

Aliena Mari P. Miranda (5 BS Applied Physics with Materials Science Engineering) of Ateneo de Manila University was awarded Best in Oral Presentation (undergraduate cluster) at the Materials Science and Engineering Summit 2018 Research Fair held last 16-17 March 2018 at the Engineering Theater of the University of the Philippines-Diliman. Miranda’s research was entitled, “Green synthesis of Fe2O3/graphene and MnO2/graphene nanocomposites for supercapacitor electrodes,” under the supervision of Dr. Erwin P. Enriquez of the Department of Chemistry of Ateneo de Manila University. Of the five participants in the Research Fair,  four are from Ateneo de Manila University. The two-day summit, with the theme “Sinagtala: A Focus on the Innovations of Philippine Materials,” has four events: Olympiad, ProdExpo, Career talks, and Research Fair.

Below is an interview with Aliena Mari P. Miranda by Ateneo Physics News:

1. How did you arrive at Ateneo de Manila University from high school?

I’m from Pasig City Science High School. I entered the Applied Physics/MSE program because I was interested in working on nanotechnology. Studying in a science high school helped cultivate my interest in the sciences, and luckily I was granted a scholarship to the Ateneo so I could pursue this interest.

2. What is the significance of your research?

With rampant pollution and limited resources, there is high interest in producing energy storage using environmentally-friendly methods and abundant materials. One device of interest is the supercapacitor, which, unlike the conventional dielectric capacitor, makes use of an electrolyte separated by a porous membrane. The electrodes have to be conductive, and have to have a high surface area to increase the energy it stores. Metal oxides such as iron oxide and manganese oxide have high specific capacitances but they suffer from low conductivity and low surface area. To address this, these metal oxides can be deposited in nanoparticle form onto graphene to increase their surface area and conductivity. The research shows that effective supercapacitor electrodes made of metal oxide-graphene nanocomposites can be created using green synthesis methods such as direct exfoliation and microwave-assisted hydrothermal synthesis, addressing the need to replace energy-intensive methods and toxic reagents. It also shows that iron oxide and manganese oxide increase the specific capacitance of graphene as the nanocomposites had higher specific capacitances compared to plain graphene.

3. Is this research a continuation of your BS Applied Physics thesis?

This research isn’t a continuation of my BS Applied Physics thesis, so the toughest part was getting used to the lab protocols for working in a chemistry laboratory. Working in a chemistry laboratory taught me to be more meticulous with my work especially since the reagents and tools we were using could be expensive.

I did my Applied Physics thesis under Dr. Christian Mahinay at the Vacuum Coating and Plasma laboratory where I worked on the characterization of DC-magnetron argon plasma using a Langmuir probe that I designed. I decided to start a different study for my MSE thesis because I was interested in Dr. Enriquez’s work on supercapacitors. Luckily, Mark Cabello, a previous graduate student, had been working on creating metal oxide graphene nanocomposites but they were designed for dye-sensitized solar cells, so Dr. Enriquez advised me to work from there to develop supercapacitor electrodes.

4. What motivated you to join the contest?

I was motivated to join the contest because my friends and I joined the quiz bee in the same summit two years ago. Our professor in an MSE class, Dr. Jose Mario A. Diaz, told us we’d get bonus points if we won the quiz bee. Unfortunately, we didn’t win then, so I kept my eye on the summit and decided my MSE thesis was good material for the research fair. A block mate, and an org mate joined the research fair as well so we cheered for each other during the oral presentations.

Students should be encouraged to talk about their work with others so that they can get feedback from people other than their peers and teachers in their school. We got to interact with students from different universities and learn about their work, and it helped build this sense of community knowing that science is alive and well all around the country, although it could be better if more support was given and more resources were shared. One of the professors commented that I could approach them to use their facilities since I was having difficulties with characterization. Events like this MSE Summit gives me hope that science can flourish as a field in the Philippines.

5. Were you able to make it to the BPI-DOST awards?

Yes, I am one of the two awardees from the Ateneo to the BPI-DOST Science Awards. They decided to cut the nominees from three last year down to just two this year so the competition was tougher. I thought I wouldn’t make it because one of the panelists commented he didn’t understand my methodology, but somehow it worked out in the end. The results have not been announced online but we were emailed letters last week. The other awardee is Kariz Bautista, a fourth year BS Chemistry/MSE student who worked on modified nanocellulose derived from hyacinths under Dr. Jose Mario Diaz. The awarding ceremony is on 5 June 2018.

6. What are your future plans in 5 years?

I’m currently waiting for the results of my application for the Japanese Government (MEXT) Scholarship. My blockmate and I have passed the second screening, which was under the university we’re applying to, and now we’re waiting for the results of the third screening under the Japanese Government. In the meantime, I plan to finish my reading list and pick up a few online classes. If I don’t get into the scholarship, I plan on working in the construction industry.

7. Was your paper already published?

No, my paper has not been published yet. I haven’t had the time to make my work suitable for publication, and there’s still a lot to do.

8. Any parting words?

Getting started seems tough but it’s a crucial step. Don’t let your inhibitions get the best of you. I started studying physics not really knowing what I got myself into, but I braced myself for the ride. I can’t say I’ve always been passionate for physics, but sometimes you just have to grit your teeth and work through it.

ateneophysicsnews_aliena_miranda_up_mse_summit_2018_award

Certificate of Recognition of Aliena Mari P. Miranda for winning the Best in Oral Presentation (Undergraduate Cluster) at the MSE Summit 2018 Research Fair in University of the Philippines-Diliman last 16-17 March 2018.

Advertisements

Erasmus+ ARTIST project for science teaching innovation at AdMU: An interview with Mr. Ivan Culaba of the Physics Department

artist-group

The ARTIST partners during the kick-off meeting at University of Bremen, Bremen, Germany on January 2017. In the photo are Dr. Joel Maquiling (back row, 3rd from the left) and Mr. Ivan Culaba (back row, 2nd from the right) of the Department of Physics, School of Science and Engineering, Ateneo de Manila University. Source: Action Research To Innovate Science Teaching (ARTIST)

by Quirino Sugon Jr

Ateneo de Manila University and De La Salle University-Manila were chosen by the European Union’s Erasmus+ Program as its two partner universities in the Philippines for the ARTIST (Action Research To Innovate Science Teaching) project. The other eight partner universities are University of Bremen (Germany), Ilia State University (Georgia), Alpe-Adria-University (Austria), University of Limerick (Ireland), Gazi University (Turkey), Batumi Shota Rustaveli State University (Georgia), The Academic Arab College of Education (Israel), and Oranim Academic College of Education (Israel). The project coordinators are Prof. Dr. Ingo Eilks of the University of Bremen and Prof. Dr. Marika Kapanadze of Ilia State University.

The ARTIST project aims to innovate science education through classroom‐based and teacher‐driven Action Research–a cycle of innovation, research, reflection and improvement–by forming networks of higher education institutions, schools and industry partners in each partner country. The ARTIST project allows the partner universities to acquire state-of-the art audio-visual and science equipment for teacher trainings and instructions. Training materials on action research will be developed and used in workshops and courses.

Below is an interview with Mr. Ivan Culaba, manager of the ARTIST project in Ateneo de Manila University.

1. What is your role in the project?  Are there other AdMU faculty involved here? 

I am the manager of the ARTIST project in Ateneo. In the Department of Physics, Dr. Joel T. Maquiling and Ms. Johanna Mae M.  Indias are also involved in the project. Joel has accompanied me in the meetings and helped in the presentations. Joel and Johanna helped in the identification of possible industry partners. Johanna also visited the high schools for evaluation as possible network partners. Ms. Via Lereinne B. Chuavon of the Office of Social Concern and Involvement assisted us in the networking with high schools and communications with the Schools Division Office of Marikina City. I also had very constructive discussions with Mr. Christopher Peabody of the Department of Chemistry. Mr. Tirso U. Raza, of the Office of Facilities and Sustainability has assisted us in finding the source of the audio visual equipment and in the preparation of the rooms for their installation. Our technicians, Mr, Numeriano Melaya, Mr. Colombo Enaje, Jr. and Mr. Ruel Agas have been working on making the ADMU ARTIST Network Center and Physics Education Resource Center (F-230, Faura Hall) become functional.

 

ateneophysicsnews_ARTIST_lecture_20170407

Action Research for the Reflective Practitioner workshop at Ateneo de Manila University, 7 April 2017

3. How did you get involved in the project?

 

This project was conceived by Prof. Eilks and Prof. Kapanadze after their successful implementation of TEMPUS project SALiS. I met Prof. Kanapadze during the Active Learning in Optics and Photonics workshop at Ilia State University, Tbilisi, Georgia in 2014, where she was the organizer. She invited me into the ARTIST project and I extended the same invitation to Dr. Lydia Roleda of the De La Salle University-Manila.

I became interested in the ARTIST project since we had just started with the NSTP activity wherein our Physics majors were assigned to Sta. Elena High School for the area engagements. While our students were facilitating in the high school students’ physics activities we were also engaged in the Physics training of the science teachers in the same school. We thought that the high schools would immensely benefit from the ARTIST project in line with the university’s thrust for greater social involvement and service learning.

The ARTIST project was approved by the EU commission on October 2016 but the first tranche of the budget was released on January 2017.

4. What were your ARTIST meetings in Europe all about? 

The kick-off meeting was held at the University of Bremen, Bremen, Germany on 18-20 January 2017. It was the first time that we met our collaborators in the project. The objectives of the project, deliverables, work plans, and financial management among other topics were discussed. The second meeting was held at the Alpen-Adria-Universität Klagenfurt, Vienna, Austria on 14-15 September 2017. Progress reports on the networking with schools and industries, financial status of each partner university, scheduling of the workshops, planning of the e-journal ARISE and other matters were discussed in the meeting. The EU officials were not present in the meeting.

ateneophysicsnews_physics_education_resource_center_20180410

Physics Education Resource Center (PERC) and ARTIST Network office Room F-230, Faura Hall

5. How is the Physics Education Resource Center in Faura Hall?  

I am very happy that we now have a Physics Education Resource Center (PERC) where the Physics Education group can meet and hold meetings and where the valuable lecture demonstration experiment set-ups can be displayed and made accessible to the faculty of the Department. A number of the demos have been transferred from F-229 and SEC C labs to PERC. Acquisition and development of lecture demonstration experiments will be a continuing process. The next step is the documentation of the resources so that the faculty may know what demos are available and how to use them.

The room will also serve as the office of the ARTIST project. The science equipment which will be purchased under this project will be placed in this room. We have ordered Physics equipment which are aligned to the Physics topics in Grades 7-10, although they may also be used for senior high school Physics. The list covers mechanics, heat and thermodynamics, waves and sound, optics and electromagnetism. There will also be materials which will be locally fabricated like ticker taper timers, circuit boards and Plexiglass lenses.

6. What are upcoming activities of the ARTIST project for this year?

We have held two seminar-workshops on Action Research. The first one was held on August last year in Ateneo de Manila. Prof. Maricar S. Prudente, who is an expert in Action Research, was the main speaker. The facilitators were Dr. Lydia S. Roleda, Dr. Minie Rose C. Lapinid and Dr. Socorro C. Aguja. They are all from the Science Department, Bro. Andrew Gonzales, FSC College of Education, De La Salle University. There were about ten participants from Roosevelt College, Inc. and some graduate students.

The second seminar-workshop was held recently on 7 April 2018 at Faura Hall, Ateneo de Manila. It was organized by the ARTIST team of Ateneo and De La Salle. The same team of speaker and facilitators from De La Salle University ran the seminar-workshop. A total of 31 participants from the ARTIST network of high schools – Parang High School, Sta. Elena High School, Marikina High School, Colegio de San Agustin, and graduate students in MS Science Education attended the workshop.

Another workshop on Action Research will be held on 15-18 May 2018 at De La Salle University-Manila. The ARTIST partners from Germany, Ireland, Austria, Georgia and Israel will facilitate the workshop. The first three days will be spent on understanding AR and writing AR proposals by selected teacher-participants. There will be an AR symposium, open to other teachers, on the fourth day where AR case studies will be presented.

Come October 2018 the workshop on Action Research and a meeting of the collaborators will be held in Haifa, Israel.

7. Any parting thoughts?

We hope that this project will have a positive impact on the way science is taught in the partner high schools and the lessons learned from these experiences may be adapted by other schools in the country.

ateneophysicsnews_ARTIST_workshop_AdMU-DLSU_20170804

Participants of Action Research for the Reflective Practitioner workshop at Ateneo de Manila University, 4 August 2017

MO and AdMU organized the Philippines Grants Workshop 2017 with speakers from US funding agencies

The participants of the Philippines Grant Workshop 2017 held last August 26, 2017 at the Crowne Plaza Manila Galleria Hotel in Ortigas, Quezon City. The workshop was organized by Manila Observatory and Ateneo de Manila University. The speakers are from the US Department of State (DoS) and Department of Defense (DoD).

by James Bernard Simpas

The Manila Observatory and the Ateneo de Manila University organized the Philippines Grant Workshop 2017 which provided researchers in the Philippines an overview of international grant opportunities from the US Department of State (DoS) and Department of Defense (DoD). It was held at the Crowne Plaza Manila Galleria Hotel in Ortigas, Quezon City on August 26, 2017. The workshop presented tips on how to write successful grants and introduced the participants to some of the administrative requirements such as registering their university in required systems, and how to submit grants to the US grants.gov system. Most importantly, the workshop provided an opportunity for researchers to meet face-to-face with points of contact within the US DoS and DoD so that they would feel comfortable reaching out with research ideas.

There were 44 participants in the workshop. Of the total number of participants, nine were speakers and representatives from the US DoS and DoD as well as from the US Embassy. The thirty five local participants were from Philippine universities, Philippine government agencies, and research institutions. The academic sector was represented by participants from the Ateneo de Manila University (ADMU), De La Salle University (DLSU), University of Santo Tomas (UST), and University of the Philippines Diliman (UP Diliman). Of the 35 local participants, a number was also from the Manila Observatory. The Philippine Department of Science and Technology (DOST) was also represented, as well as the Department of Environment and Natural Resources? Environmental Management Bureau – Cordillera Autonomous Region (DENR EMB-CAR).

The speakers and resource persons from the US DoD and DoS provided information about their grant opportunities for Philippine researchers. The welcome remarks were delivered by Dr. Antonio La Viña, Executive Director of the Manila Observatory. He underscored the importance of the workshop as a means for initiating and strengthening engagements and collaborations. The Introduction from the US Embassy was given by Mr. Walter Nightingale, Vice Consul of the US Embassy in the Philippines. A presentation on the grant opportunities from the Office of Naval Research Global (ONRG), and briefly from the US Army International Technology Center Pacific (ITC PAC) were provided by Dr. Jason Wong, the Science Director of ONRG. CDR Joseph Martin, the incoming ONRG Science Director, was also introduced during the workshop. The grant opportunities from the US Air Force Office of Scientific Research Asian Office of Aerospace Research and Development (OARD), were presented by Lt. Col. Scott Robertson, program officer of OARD. They emphasized that they find, fund, and manage innovative science and technology studies that are relevant to their missions, and that they fund researchers outside the United States, mostly universities and non-profit scientific institutions.

Several presentations on funding opportunities from the US DoS were also provided by speakers from the Public Affairs Section of the US Embassy in Manila. These grant opportunities were (1) STRIDE – Science, Technology, Research, and Innovation for Development; (2) YSEALI – Young Southeast Asian Leaders Initiative, and (3) the opportunities managed by the Philippine American Educational Foundation (PAEF) such as the Fulbright Scholarship Program, Hubert H. Humphrey Fellowship Program, and the Fulbright Graduate Student Program, among others.

(See original article at Manila Observatory for more photos.)

Brain-on-a-chip for understanding cortical circuit formation and function: a talk by Dr. Vincent Daria of Australian National University

ateneophysicsnews_vincent_daria_brain_chip_event_20170707 (2)

by Marienette Morales Vega

The Department of Physics would like to invite you to the talk “Brain-on-a-chip for understanding cortical circuit formation and function” by Dr. Vincent Daria, Group Leader of Neurophotonics Laboratory at the Eccles Institute of Neuroscience of Australian National University to be held on 17 July 2017, Monday, 11:00 a.m. at CTC 118.

Title: Brain-on-a-chip for understanding cortical circuit formation and function

Abstract:

We aim to understand the formation and function of brain circuits by growing neurons on nanostructured semiconductor devices (a.k.a. Brain-on-a-chip). We artificially grow brain cells on a semiconductor wafer patterned with nanowire scaffolds. From a fundamental perspective, we aim to investigate the structural significance of nanoscale topographies for guiding neurite outgrowth. To correlate the circuit function on the neurons grown on-a-chip with that of certain areas in the brain, we need to analyse the function of single neurons and population of neurons forming circuits in living mammalian brain slices and that of an intact rodent brain. To achieve this, we use novel photonic technologies not only to visualize these neurons but also to stimulate and record neuronal activity to understand the input/output transfer function of neurons and circuits. Understanding neuronal and circuit function is in itself a grand challenge and has attracted major research thrusts worldwide. Hence, correlating the input-output transfer function of neuronal of circuits from both living brain and that of neurons grown on-a-chip can lead to new insights on how the brain functions during learning, memory and information processing.

About the Speaker

Vincent Daria earned his PhD in Applied Physics from Osaka University, Japan. From 2001 to 2004 he pursued postdoctoral work at the Risoe National Laboratory (Denmark) where their group pioneered the use of dynamic multi-beam optical tweezers for manipulating arrays of microscopic objects and cells simultaneously. From 2004, he established a research group at the University of the Philippines to work on ultrafast lasers in combination with spatial light encoding for multi-beam optical tweezers combined with non-linear optical processes. Such technique was applied to fs-laser surgery and manipulation of cells and 3D holographic micro-fabrication via photopolymerization. In 2007, he joined the physics department at the Australian National University (ANU) where they initially designed a unique microscope capable of probing living cells and neurons in the brain. In 2010, Dr. Daria moved his laboratory to the John Curtin School of Medical Research to fully engage their collaboration with neuroscientists and apply their holographic two-photon microscope for simultaneous photostimulation of synapses and multi-site Ca2+ imaging of neuronal networks in living brain tissue. The success of this venture enabled the group’s expansion where they continuously received highly competitive funding from the Australian Research Council and the National Health and Medical Research Council. He is currently the group leader of the Neurophotonics Laboratory at the Eccles Institute of Neuroscience at ANU. He continues to teach optics and laser courses as well as maintain collaborations with researchers from the Research School of Physics and Engineering at ANU.


Marienette Morales Vega, Ph. D.
Assistant Professor, Physics Department
Materials Science Laboratory
Head, NanoSpectroscopy Group
Ateneo de Manila University
Faura Hall 318
Email: mvega@ateneo.edu

Decision support system using near cloud for disaster and risk management: an interview with Dane Ancheta (BS APS-ACS 2017)

ateneophysicsnews_dane_ancheta_decision_support_system_near_cloud_20170521

“Design and development of decision support system using near cloud for disaster management and risk reduction” by E. D. Ancheta (right), J. A. Dela Cruz, and A. J. Domingo. Advisory committee: N. Libatique, PhD, G. Tangonan, PhD, D. Solpico, and D. Lagazo. Department of Electronics, Computer and Communications Engineering, Ateneo de Manila University.  Interlinks 13.0 was held last 5 May 2015, 1:00-5:00 p.m., at Convergent Technologies Center (CTC) Rm 413.

by Dane Ancheta and Quirino Sugon Jr

Dane Ancheta is a graduating student of BS Applied Physics and Applied Computer Systems (BS APS-ACS) of the Ateneo de Manila University and is one of the four last BS APS-ACS majors taking this course. After graduating High School from Ateneo de Zamboanga University in 2012, she went on to Ateneo de Manila University on a 100% financial aid scholarship, and a DOST merit scholarship. She worked at Manila Observatory (MO) for her physics thesis entitled “Temporal variability of localized rainfall events in metro manila over 2 years (2013-2014).” She also worked in Ateneo Innovations Center (AIC) for her Applied Computer Systems (ACS) thesis entitled “Design and development of decision support system using near cloud for disaster management and risk reduction.” Her co-workers are April Domingo (BS Computer Engineering) and Jane Dela Cruz (BS Electronics and Communications Engineering). They presented a poster of their work last 5 May 2017 at Interlinks 13.0, an annual research poster exhibition organized by the Ateneo Innovation Center for the School of Science and Engineering (SOSE) of Ateneo de Manila University. The abstract of their poster reads as follows:

In disaster scenarios, the lack of wireless internet or weak cellular network signal poses a very real threat to crucial information gathering and sharing. Using Near Cloud to store, load and upload information, this project has designed and developed decision support nodes that is able to to gather and distribute intelligent information before, during, and after disasters. These nodes are cached in with key information and data needed for disasters, i.e. maps, message reports, and images. The nodes serve as the command and control in early warning and disaster management systems. Key capabilities featured in for the decision support node include: broadcast mode that is broadcasting message via RF, mapping and visualization, data mining, near cloud, and the medical decision support system. A decision support node architecture is then developed and proposed as the main command and control as mobile kiosks. This mobile kiosk architecture is developed with a number of Raspberry Pi 3‘s, each of which are connected to perform and handle one application in a grid pattern.

Below is an interview with Dane Ancheta by Ateneo Physics News:

1. Why did you choose physics?

I could not imagine myself not taking physics.  I chose physics in all colleges that I applied. I don’t want to live my life wondering, “What if I had taken physics?”  

I love science. When I was a little girl, I would watch National Geographic. I’m naturally inquisitive. My teachers were great and supportive, but it was generally my curiosity that drove me to take physics.

2. Can you tell us about your your physics thesis?

I worked at the Manila Observatory for my thesis entitled “Temporal variability of localized rainfall events in metro manila over 2 years (2013-2014)”. My thesis adviser is Dr. James Simpas and Ma’am Genie Lorenzo. The data comes from the, at the time, newly installed dense network of weather stations around Metro Manila. For my thesis, I used at around 24 stations that are at a 5 km radius apart each. Basically, what I did was characterize localized rain events such as thunderstorms and precipitation; bigger events such as monsoons and typhoons are not included. We found out that the most amount of rainfall is experienced in Tayuman, Manila, though Makati City and Quezon City also experience high amounts of rainfall. The probability of rainfall is highest in middle and western Metro Manila, while it is lowest in southeastern Metro Manila. The study characterizes for the first time the areas of likelihood, rainfall and temporal correlation for the localized rain events in Metro Manila. It does not, however, explain such behavior, so we are still looking for an explanation  This work will definitely be continued or taken over.

For this thesis, all data were being sent to Manila Observatory. It is hard work to make sure that the data we are preparing are usable. We don’t get the data “clean”, that is why we have to check if they are healthy or anomalous. The data come from the weather stations that are exposed to the elements. But I did not have to go out as data from these stations were directly received by MO. I used QGIS and a little Python. I had learned many things working on this project.  This August 2017, we shall go to Singapore for the Asia Oceania Geoscience Society ( AOGS) conference. I shall present a poster of my physics thesis there. A good number from the research team is going because we have both the AQD-ITD (Air Quality DynamicsInstrumentation and Technology Development under Dr. Obiminda Cambaliza and Dr. James Simpas) and RCS (Regional Climate Systems under Dr. Narisma) researchers presenting.

3. Can you tell us about our Applied Computer Systems thesis?

In our 5th year, we start working on our ACS thesis under a thesis group with the ECCE (Electronics, Computer, and Communications Engineering) Department. I got involved in Ateneo Innovation Center where I became part of a big research team. On-going projects were laid out and discussed for us. The bigger research team is currently working on Multi-platform ICT Decision Support System UAVs , Vehicle Hubs, Ubiquitous Computing for Disaster Risk Reduction. We settled on the mission control end of the system. There are three of us in the thesis group- April Domingo is from CoE (Computer Engineering) and Jane Dela Cruz is from ECE (Electronics and Communications Engineering). Basically what we do is we receive all information from the responders and UAVs, and develop a system for this flow of information.

In the event of a disaster scenario, communication lines may be cut off due to damages to infrastructure, making information sharing difficult. Information that may be crucial for damage assessment and rescue operation would be lost or would not be transmitted effectively. In the research, we used the near cloud to store, load and upload information, this project has designed and developed decision support nodes that is able to gather and distribute intelligent information before, during, and after disasters.

We built upon the thesis of those who worked on near cloud before us. The previous team used Ionics plug computer, however, since this product was discontinued, we decided to make our own near cloud using Raspberry Pi 3 and terabyte hard drives. Our architecture is as follows: there is a raspberry pi node which serves as a serve/gateway. All other Raspberry Pi units with their corresponding applications are connected to this node. The architecture itself is an enabler: it enables all the applications to run in the same network.

The system also has near cloud capabilities. It acts as a cloud storage, but for a local network. This is done by configuring a Raspberry Pi for hotspot capabilities, while connecting the terabyte hard drive storage to it. Therefore, anyone can connect to the Raspberry Pi network and access all the files stored in the hard drive. Devices such as phones and laptops can access, download or upload (with permissions) files into the hard drive through this network as long as they are connected to the hotspot. The system also has drop box capabilities. This technology will be useful in evacuation centers. Given that communication lines could be cut off and there might not be enough power, it is hard to get information through. But the Raspberry Pi is low maintenance and low power, but powerful enough to make information available for access via the preloaded data in the hard drive. We tried to test this system by connecting about 10 devices, and it can work well in accessing files and streaming videos.

Another capability is our war room display with multiple screens where the interface is shown. This is how it works: responders and UAVs are on the ground send data to the mission control. The communication is done by radio frequency module at 900 MHz, which reach about 5km point to point without walls. If the messages from a responder is being sent, the message will be relayed to the different phones until it reaches mission control. For the responders sending a message to the mission control, the message and location of the responder will show up in the Google Maps API, so it will be easier to visualize where the responders are. This is how information will be received and instructions will be sent out from the mission control.

The most difficult part of the thesis are the times we have to learn the language then and there. We try to solve problems not encountered in class. We used a lot of different languages for different functions, such as C#, HTML, PHP and mySQL. We used Raspbian for the Raspberry pi the Windows 10 IoT (Internet of Things) core, Visual Studio for the interface, PHP for the chatroom, and Google API for the mapping. We have to learn using internet and the kindness of people.

4. Were you under a scholarship?

I am a Financial Aid scholar. Our kind benefactor is a BS APS-CE (Applied Physics / Computer Engineering) graduate and he gives scholarships to students who are pursuing the same course. I am lucky to have a benefactor like that who is passionate about supporting students interested in physics.

I am also a DOST scholar ever since sophomore year. So that makes three or four years. My failure in one class did not impact my scholarship that bad. It had to be put on hold for a time until I passed, but I did eventually get it back. The failure in that class is just a bump. I did study and did well in my other classes, so I did not feel like I was in danger. My QPI was 2.89 even with the failed class. I survived.

5. What are your plans for the future?

I am not sure yet if I want to take engineering or masters. I am thinking of going to China to do my masters, but I still have to consider the requirements, e.g. fixing papers and submissions. I am very nervous, since it is really an open field.  There is no one direct path to go to. There is so much freedom to choose from. So I have not decided yet on what to do.

6. Any parting words to our Physics majors?

The most difficult part of being a BS Physics/Computer Engineering major is the rigor that comes into the work. It is both a difficulty and a blessing. Not everybody undergoes that kind of rigor that is required of physics. We had to learn a lot: even failure is a learning process. I learned to shift focus from just getting good grades to learning something and growing in the course. I did fail one class: Electromagnetics. I try to look on the bright side and say it was not that bad because it pushed me to do better in my studies.

Physics and Computer systems go very well together. As a physicist, it is really important to work with computers and use them for your advantage. It was sad that the course had to be discontinued. We do learn to program using C++ in PS 130 Computational Physics; however I think it is not enough programming for physics. Even if the course does create excellent and competent students, after college they get into web develop or work in IT related fields. Now, there’s no ACS. It is a shame. Programming is so useful.  In today’s age, if you can program, you can hold the world on a string.

Stay curious. Be inquisitive. Never stop asking questions.