Satellite systems and space development programs: a talk by Prof. Motoi Wada of Doshisha University


The Department of Physics of Ateneo de Manila University cordially invites you to

Art of Science and Engineering III: A Talk on Satellite Systems and Space Development Programs

by Prof. Motoi Wada (Applied Physics Laborary, Doshisha University)

  • Date: 16 January 2017
  • Time: 1:00-3:00 p.m.
  • Venue: SOM 211 (John Gokongwei School of Management)

Abstract: The previous talk covered a story of gravitational wave detection. It is a science supported by an advanced technology. We go out to interstellar space this time. There, sophisticated control systems determine trajectories of explorer satellites solving Newtonian mechanics problems that you learn in your classroom. Mathematical formulations visualize images of photon signals in invisible wavelength range from dark deep space. This talk will cover status of space development programs at both USA and Japan


Related Posts:

AMBER magnetometer installation at MO Davao station and NAMRIA Magnetic Observatory


Dr. James Simpas, Clint Bennett, and Dr. Endawoke Yizengaw at Manila Observatory (MO). Top right: AMBER sensor surrounded by bamboo fence at MO Davao Station. Bottom right: AMBER box being carried inside MO Solar Research Building.

Two AMBER (African Meridian B-field Education and Research)  magnetometers were installed in the Philippines. The first was installed at Manila Observatory’s Davao station in Matina Hills in 12 February 2016 and the other at the Magnetic Observatory of the Philippine National Mapping and Resource Information Agency (NAMRIA), Muntinlupa in 13 June 2016. The principal investigator of the AMBER project is Dr. Mark Moldwin from the University of Michigan, while the principal investigator of the AMBER expansion project is Dr. Endawoke Yizengaw from the Institute of Scientific Research of Boston College. The installations in the Philippines were led by Dr. James Simpas and Clint Bennett. Dr. James Simpas is an Assistant Professor of the Department of Physics of Ateneo de Manila University and head of Urban Air Quality / Instrumentation Technology Development and   programs (UAQ/ITD) at Manila Observatory. Clint Bennett is an Instructor at the Department of Physics of Ateneo de Manila University, Coordinator of the Philippine MAGDAS (Magnetic Data Acquisition System) Network, and research staff of the Upper Dynamics Program of Manila Observatory.

The AMBER magnetometer network was built by Boston College to gain a more complete global understanding of equatorial ionospheric motions. AMBER magnetometer stations are used to connect the European IMAGE-SAMNET-SEGMA magnetometer arrays to low and dip-equator latitudes, and link up with South African Intermagnet and Antarctic magnetometers in the southern hemisphere. Amber aims to provide complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage.  The two AMBER installations in the Philippines at Davao and Muntinlupa were funded by the Air Force Office of Scientific Research (AFOSR).

AMBER (African Meridian B-field Education and Research) Magnetometer Network

Global Equatorial AMBER ()Magnetometer Network

A. Installation in MO-Davao Station

Last 12 February 2016, Dr. Endawoke Yizengaw of Boston College was accompanied by Dr. James B. Simpas, the head of the Instrumentation Technology Division of Manila Observatory, in the installation of an AMBER magnetometer in MO-Davao station at Matina Hills, with the help of MO-Davao staff Efren Morales and Ruel Narisma.

Davao is an important location since through it passes the magnetic dip equator where the geomagnetic field is nearly horizontal and not tilted from the vertical unlike at the poles. Along the magnetic dip equator flows the Equatorial Electrojet (EEJ), which is a narrow ribbon of eastward current that peaks around 1:00 pm local time. During geomagnetic storms, ring currents are also formed in the equatorial region at 3 to 5 times the radius of the earth (about 6,378 km). The EEJ and ring currents generate magnetic fields around them which can be measured by the magnetometers near the equator.

B. Failed Installation at Manila Observatory

Last 9 February 2016, a few days before the AMBER magnetometer was installed at MO-Davao station, Dr. Endawoke Yizengaw met with Clint Bennett, Dr. Quirino Sugon Jr, and Dr. James Simpas at Manila Observatory. Dr. Yizengaw brought with him the box containing the AMBER magnetometer sensor, cable, and logger. But after some tests, the magnetometer data received was too noisy.

Clint Bennett and Dr. James Simpas also tested the magnetometer readings at the Jesuit Residence near the High School area of the Ateneo de Manila University Campus last 24 February 2016. The data was still noisy. They tried to test again 4 days later for about 30 min. The same noise problem. A new location is needed.

C. Installation at Magnetic Observatory of NAMRIA in Muntinlupa


Clint Bennett and CPO Alex Algaba in front of the MAGDAS magnetometer data logger at the Magnetic Observatory of NAMRIA in Muntinlupa. Top right: Clint Bennett and Ezequiel Manalac of MO unloads the AMBER cables. Bottom right: Henry Nayve and Clint Bennett of MO sets up the internet connection of the AMBER sensor in NAMRIA office.

Last 5 March 2016, Clint Bennett contacted CPO Alex Algaba of the Magnetic Observatory of NAMRIA (National Mapping and Resource Information Authority), and asked permission to install the magnetometer at the observatory in Muntinlupa. A month later, CPO Algaba informed Mr. Bennett that Commodore Jacinto M. Cablayan, Director of the Hydrography Branch of NAMRIA, had obtained the permission from NAMRIA for the installation of the AMBER magnetometer.

NAMRIA was created in 1988 by DENR (Department of Environment and Natural Resources) to “provide the public with mapmaking services and to act as the central mapping agency, depository, and distribution facility for natural resources data in the form of maps, charts, texts, and statistics.” NAMRIA’s Director is Dr. Peter Tiangco who manages four technical branches: (1) Mapping and Geodesy, (2) Hydrography, (3) Resource Data Analysis, and (4) Geospatial Systems Management.

The Hydrography Branch acquires and analyzes hydrographic and oceanographic data for promoting navigational safety and oceanographic research. The outputs are nautical charts, navigational warnings, and tide and current predictions. The hydrography branch also collects 12-month geomagnetic data from magnetometers hosted by NAMRIA, which are part of OHP (Ocean Hemisphere network Project) of the University of Tokyo and the MAGDAS/CPMN (Magnetic Data Acquisition System / Circum-pan Pacific Magnetometer Network) Project of Kyushu University. Now, the hydrography branch also collects 12-month geomagnetic data from the AMBER Netowrk. These data are used together with those from 18 repeat stations all over the country to construct data products such as geomagnetic maps.

Last 14 April 2016, Clint Bennett together with Exequiel Manalac and Dr. Quirino Sugon Jr. visited the NAMRIA Magnetic Observatory in Muntinlupa, bringing with them the AMBER magnetometer set. They were welcomed by CPO Alex Algaba. Because of the length of the magnetometer cable is not long enough, the magnetometer was buried only a few meters from the iron gate, such that whenever the gate is opened or closed, the magnetometer readings jump.

On 13 May 2016, Clint Bennett returned to NAMRIA together with and Henry Nayve and Dr. Quirino Sugon Jr to adjust internet settings of AMBER’s BeagleBone, so that the data would show up in the AMBER website. The set-up was finished about noon.  Then the MO team, together with CPO Alex Algaba, traveled to NAMRIA headquarters in Manila. There they were received by Commodore Jacinto M. Cablayan, Director of the Hydrology Branch of NAMRIA. Clint Bennett and Dr. Quirino Sugon Jr discussed with Commodore Cablayan and his staff the AMBER network, the Manila Observatory, and NAMRIA’s interest in geomagnetic field data. The action step agreed in the meeting was the creation of an MOU between MO and NAMRIA regarding the AMBER installation.

On 13 June 2016, the magnetometer was transferred to its final location, more than 200 m from the iron gate. It’s now in the woods behind magnetometer house, far from vehicular or human traffic.


Meeting at the NAMRIA Hydroglogy Branch office at Manila. From left to right: CPO Alex Algaba, Eng’r. Dennis Arsenio B. Bringas, Commodore Jacinto M. Cablayan, Clint Bennett, and Dr. Quirino Sugon Jr.

Ateneo Physics faculty Clint Dominic Bennett attends two ionospheric research workshops in ICTP, Italy



by Quirino Sugon Jr

Ateneo Physics faculty Clint Dominic G. Bennett  attended two workshops at the Abdus Salaam International Center for Theoretical Physics (ICTP), Italy. The first was the Workshop on the use of Ionospheric GNSS Satellite Derived Total Electron Content Data for Navigation, Ionospheric and Space Weather Research last 20-24 June 2016. The second workshop was the International Beacon Satellite Symposium 2016 last 27 June to 1 July, 2016.

GNSS is the Global Navigation Satellite System, a term which encompasses the Global Positioning System (GPS) of US and the GLONASS of Russia. GNSS satellites send positioning information to receivers on Earth via radio waves which pass through the ionosphere, where their propagation directions are bent or reflected in the same way as light beams pass from air to water. Comparing the satellite positions from the transmitted and received values provides information on the density of electrons in the ionosphere, positions of ground-based receivers, and the effects of solar activity on the ionosphere.

The Beacon Satellite Symposium 2016, on the other hand, was organized by Beacon Satellite Group of the International Union of Radio Science (URSI) Commission G. The symposium provides an opportunity for international ionospheric scientists to meet and collaborate on the study of ionospheric effects on radio propagation for science, engineering, and research applications.

Below is an interview with Mr. Clint Bennett by the Ateneo Physics News:

1. Where did you go to in Italy?

I went to the Abdus Salam International Center for Theoretical Physics to the attend the Workshop on use of Ionospheric GNSS Satellite Derived Total Electron Content Data for Navigation, Ionospheric and Space Weather Research last 20 – 24 June, 2016 and the International Beacon Satellite Symposium 2016 last 27 June to 1 July, 2016. The workshop focused on training the participants in using existing TEC calibration software and explaining the results in terms of Space weather events as indicated by indices such as Kp and Dst. The symposium on the other hand was actually a conference with plenary and parallel sessions. It was organized by the Beacon Satellite Studies Group of URSI Commission G, an interdisciplinary group, servicing science, research, application and engineering aspects of statellite signals observed from the ground and in space. There were around 200 participants in the symposium.

2. Who invited you to go to the conference?

I was invited by Dr. Endawoke Yizengaw from the Boston College Institute for Scientific Research. He is one of the Principal Investigators of the AMBER (African Meridian B-field Education and Research) project. The Manila Observatory is hosting two of the magnetometers for this project and Dr. Yizengaw has been here in Manila Observatory. My transportation and accommodation were shouldered by the conference organizers and sponsors: ICTP, ICG, Boston College and EGU.3. Did you present something?

A lot of us were invited as students and were not required to make a presentation. This is their way of encouraging Space weather research in third world countries. We were instead required to do exercises on TEC calibration and make a group report.

4. What are the talks that you found interesting? How are they related to your work at Manila Observatory and the Department of Physics? 

There were a lot of interesting talks. One of them was about the direct forcing of the thermosphere and ionosphere by small-scale gravity waves originating from the lower atmosphere. In the upper atmosphere gravity waves directly affect the thermospheric circulation by energy and momentum deposition and an interesting result is that gravity waves cool the upper atmosphere at a rate of -150 K per day.

Another one was about the detection of tsunami driven events in the ionosphere via occultation. They reported the ionospheric response to the great Tohoku earthquake and tsunami which occurred together with a minor magnetic storm. It was nice to learn that tsunamis can drive gravity waves to the ionosphere.

5. What are the interesting places and landmarks you visited? 

The Beacon Satellite Symposium included an excursion to Aquileia. It is listed by UNESCO as a world heritage site. It is an ancient Roman city in Friuli Venezia Giulia. It was one of the worlds largest cities during the Roman times and is now a major archaeological site with so much still to be excavated.

6. What are some key insights that you learned after the conference? 

The Beacon satellite symposium is evidence of growing interest in the study of Sun-Earth interaction. It has attracted a wide variety of international researchers from over 40 countries, a lot of them from non-academic institutions, to study the earth’s ionosphere and thermosphere and I think the Philippines can be part of this. It would be a big step forward if I could encourage students to be involved in this field of research.

7. Do you have any parting message to our physics students?

There are so many ways for students to get involved in the study of Space Weather. The international community makes an effort to direct funding towards problems that face the world as a whole, such as space weather effects and monitoring of natural hazards. These creates the availability of financial support for students from third world countries.


Excavations in the ancient Roman city Aquileia in Friuli Venezia Giulia, Italy

Art of Science and Engineering II: A talk on gravitational wave detection and nuclear fusion by Prof. Motoi Wada of Doshisha University

ateneophysicsnews_motoi_wada_20160708 (2)

The Department of Physics of Ateneo de Manila University cordially invites you to a talk entitled, Art of Science and Engineering II, by Prof. Motoi Wada of the Applied Physics Laboratory of Doshisha University. The talk will be held on July 14, 2016, Thursday, 10:00 a.m., at the 5th floor of the Rizal Library. Light snacks will be served.

This talk is Prof. Motoi Wada’s second talk at Ateneo de Manila University upon the invitation of Dr. Christian Mahinay, Head of the Vacuum Coating Laboratory of the Department of Physics. Prof. Wada’s previous talk was entitled, Art of Science and Technology, which was held last November 27, 2015, 1:30-2:30 p.m. at the Social Science Lecture Rooms 3 and 4He talked then about  Japan’s research in the fields particle accelerator physics and semiconductor industry–all with references to art and history.

Now, in Art of Science and Engineering II, Prof. Motoi Wada shall dazzle us once again with his breathtaking slides and videos as he talks on the latest updates on the LIGO experiment for gravitational wave detection and the engineering precision required to make such detection possible in Astronomy. Prof. Wada shall also talk about the cosmic recycling process–about how some stars die a violent death as supernovas, and how the dust and fragments from the nebulous smoke pull themselves together again through the force of gravity, forcing hydrogen atoms to combine to form Helium, resulting in nuclear fusion reaction that gives birth to new stars. But on Earth, the Hydrogen atoms that we generate do not have enough cumulative mass to form a star through nuclear fusion. So the only way perhaps is to force the fusion of Hydrogen by some other means aside from gravity, as Dr. Otto Octavius (Dr. Octopus) tried to do through the magnetic fields from his tentacles, before he plunged into the depths of the sea, holding the newborn star that could have destroyed the human race.

Is man-made nuclear fusion already possible with today’s technology?  How far are we before we can ditch fossil fuel, such as coal and crude oil, in favor of clean energies like nuclear fusion? Let’s ask Pro. Motoi Wada when we attend his talk on ARt of Science and Technology II this July 14, 2016. See you there!


Prayer for the repose of the soul of the father of Dr. Gemma Narisma of the Ateneo Physics Department



The Department of Physics of the School of Science and Engineering would like to express its condolences to the family of Andres Narisma, who succumbed to prolonged illness and joined our Creator this Wednesday morning, 1 June 2016.

Mr. Narisma is the father of Dr. Gemma Teresa T. Narisma, faculty member of the Department of Physics.

We will be grateful to the Ateneo community for your prayers for repose of Mr. Narisma’s soul and for the comfort of his remaining family.


“Blessed be the God and Father of our Lord Jesus Christ, the Father of compassion and the God of all consolation, who consoles us in our every affliction, so that we may be able to console those who are in any affliction with the consolation with which we ourselves are consoled by God.”  (2 Corinthians 1: 3-4)

Update: 3 June 2016

We have received word from the Department of Physics that Mr. Andres Narisma, the late father of Dr. Gemma Narisma, was cremated on 1 June 2016, the day he passed away.

The Narisma family will be observing a nine-day wake/vigil at their residence at 21 Jetta St., Village East, Cainta. Those who are interested
in paying their respects and sympathizing with the family may visit between 2:00 PM and 10:00 PM until the ninth day on June 9, with novena prayers and/or masses to be held every evening at 8:00 PM.